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Abstract-An inverse analysis utilizing the conjugate gradient method of minimization and the adjoint 
equation is used to estimate the space and time dependent strength of a volumetric heat source with no 
prior information for the functional forms of timewise and spatial variations of the source strength. 
Simulated experimental data, needed for the inverse analysis, are generated by adding random errors to 
the calculated exact temperatures for the boundaries and interior of the plate. In order to examine the 
accuracy of estimations under the most strict conditions, test cases such as sawtooth shaped spatial 
variation of the source strengths are considered. The effects of the number and location of temperature 
sensors on the accuracy of the estimations are systematically examined. The estimates are significantly 
improved when the thermocouples are positioned close to the locations where the source strength exhibits 

peaks and valleys. 

1. INTRODUCTION 

IN THE field of heat transfer, the inverse analysis has 

been widely used for the examination of surface con- 
ditions such as temperature or heat flux distributions, 
and thermal properties such as thermal conductivity 
and heat capacity of solids, by utilizing the transient 
temperature measurements taken within the medium 
[l-7]. However, the inverse problem of simulta- 
neously estimating the spatial and timewise variation 
of the strength of a volumetric heat source appears 
to have received little attention. 

Inverse heat conduction problems are known to be 
ill-posed [l-3], in contrast to the direct heat con- 
duction problems, which are well-posed, that is, the 
solution exists, the solution is unique and the solution 
is stable to small changes in the input data. A variety 

of numerical and analytical techniques have been pro- 
posed for the solution of such problems. They include. 
among others, the least squares method modified by 
the addition of a regularization term [I, 21, the sequen- 
tial estimation approach [I, 4-61 and more recently 
the conjugate gradient method [7-l l] using an adjoint 
equation. In the area of identifying the dynamic 

behavior of linear systems, the inverse problems have 
been recast as an ill-posed Volterra integral equation 

of convolution type [ 12-141. 
In this work we estimate the space and time depen- 

dent strength of a volumetric heat source, which 
releases its energy continuously inside a one-dimen- 
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sional plate, by an inverse analysis using the conjugate 

gradient method with an adjoint equation. No prior 
information is used on the functional forms of time- 
wise and spatial variations of the strength of the heat 

source. 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

A one-dimensional plate of thickness L, initially at a 
uniform temperature T, contains a volumetric energy 
source of unknown strength g(x, t), W m-‘. For times 

t > 0, energy is generated by the source at an unknown 
rate and spatial distribution, while the boundaries of 
the plate are kept insulated. 

Our objective is to estimate the unknown strength 
of the heat source, g(x, t), from the transient tem- 
perature recordings taken at the boundaries and 
interior of the plate. 

The mathematical formulation of this transient heat 
conduction problem for the case when the source 
strength g(x, t) is known will be referred to as the 
direct problem. It is given in the dimensionless form 

as 

d20(X, 7) aqx, 7) 
---i_ +G(x,z)= ~~. 
2X 57 ’ 

inO<X<l, z>O (la) 

ao 
x = 0 at X = 0, for 7 > 0 (lb) 

ao 
;3x=0 atX=I, for7>0 (Ic) 

@(X,7)=0 fort=O,intheregionO<X<l 

(Id) 
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NOMENCLATURE 

G dimensionless strength of the heat source 

J functional defined by equation (3) 

Ji; gradient of the functional J 

M total number of sensors 

P“ direction of descent, equation (12) 
X dimensionless spatial variable 

X,,, dimensionless sensor location 

(112 = l,2,. , M) 

Z,,, dimensionless simulated measured 

temperatures. 

Greek symbols 

B” step size, equation (14) 

;.’ conjugate coefficient. equation (15) 
6 Dirac delta function 
I: tolerance for the stopping criterion, 

equation (17) 
0 computed dimensionless temperature 
0 m computed dimensionless temperature at 

the sensor location 
i(X. z) adjoint function defined by 

equations (6) 

0 standard deviation of temperature 

measurement errors 
t dimensionless time 

rt dimensionless final time. 

where the dimensionless quantities include 0 the tem- perturbations. We find 
perature, X the spatial variable, G(X. t) the source 
strength and t the time. 

d*[AO(X, z)] a[A@(X, t)] 

The physical significance of the inverse problem 
~- ;-X2 ~~~~~ +AG(X,z) = pmPr-~~ 

considered here is as follows. Suppose the source 
strength G(X, z) is not known, instead temperature 
measurements, taken at both boundaries and interior 

of the plate, are available as a function of time. By 
utilizing these measured temperatures, determine the 
space and time dependent strength of the heat source 

G(X, r). 

3. THE INVERSE ANALYSIS 

The solution of the inverse problem described pre- 
viously with the conjugate gradient method involves 
the following basic steps : (a) the direct problem ; (b) 
the sensitivity problem; (c) the adjoint problem and 
the gradient equation; (d) the conjugate gradient 
method of minimization; and (e) the stopping 
criterion. After describing the computational pro- 
cedure in each of these steps, a solution algorithm will 
be presented for the determination of the unknown 
source strength G(X, T). It is to be noted that the 
order of presentation of the various steps listed above 
will not necessarily follow the same order as that in 
the solution algorithm. We present below the math- 
ematical description of these basic steps. 

3. I. Thr direct problem 

The direct problem, as stated previously, refers to 
the solution of system (1) when the source strength 
G(X, z) is known. In the inverse problem this quantity 
is unknown and determined by the solution algorithm 
that will be described in Section 3.6. 

3.2. The sensitivity problem 
The sensitivity problem is obtained by replacing in 

the direct problem (I), 0(X, z) by 0(X, T) +AO(X, 
r), G(X, T) by G(X, T)+AG(X, T) and subtracting 
from the resulting expression the original direct prob- 
lem (I), where AO(X. T) and AG(X, T) are small 

inO<X<l. z>O (2a) 

a(A@) 
~~~ 

?X 
= 0 at X = 0. for T > 0 

;(A@) 
--=0 atX=l, forT>O 

C?X 

(2b) 

(2c) 

AO(X, T) = 0 for T = 0. in the region 0 < X ,< I. 

6’4 

The above equations contain a new unknown quan- 
tity AG(X, T) which is determined as described in step 
7 of the solution algorithm in Section 3.6. 

3.3. The aGjoint problem and the gradient equation 
The inverse problem is solved as an optimization 

problem by requiring that the unknown function G(X, 
r) minimize the functional J[G(X, T)] defined by 

s 
” 

M 
J[G(X,r)] z J = n ,;, [@m(T)-Zm(~)l* dT (3) 

where zr is the final time, M is the number of sensors, 
and O,(T) and Z,,,(T) are the dimensionless computed 
and measured temperatures, respectively, at each 
sensor location as a function of time. 

The adjoint problem is developed by multiplying 
equation (la) by the adjoint jiinction i(X, T), inte- 
grating the resulting expression over time and space 
domain and then adding the result to the functional 
given by equation (3). We obtain 

[@m(T) -&,(T)l* dT 
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Note that when 0 is the exact solution of problem 

(I), the second term on the right-hand side of this 
equation vanishes and we recover equation (3). 

The variation AJ of the functional J is obtained by 
perturbing G(X, T) by AG(X, z) and 0(X, z) by AO(X, 
T) in equation (4), and subtracting from it the original 
equation (4). Neglecting the second order terms, we 
obtain 

bJ= ‘I 

ss 
’ ; m%(7) -.L(7)1 

0 0 m-1 

ir ’ 
x ACU(X- X,,) dX dz + 

ss 
1(X, t) 

0 0 

a’(AO) a(Ao) 
m-+AG(X,z)-T 

ax* 1 dXdr (5) 

where 6 is the Dirac delta function and X, are the 
sensor locations. 

The right-hand side of this expression is integrated 

by parts, the boundary and initial conditions of the 
sensitivity problem are utilized, and in the resulting 
equation, the coefficients of A0 are required to vanish. 

The following adjoint problem is obtained for the 

determination of the adjoint.finction d(X, z) : 

a*qx, 7) ,h,/ 
~-~jip + 1 2[0,,,(2)-Z,,(7)lG(X-x,,) 

nz= I 

= _ %$d (ea) 

7’ 
;+=(I atX=l 

I. = 0 for z = 7f 

(6~) 

(64 

and the following integral term is left 

7, ’ 
AJ[AG(X, z)] = 

ss 
E.(X, z)AG(X, z) dXdT. (7) 

0 0 

By the definition of gradient the following relation 

holds [9, 15, 161 : 

71 ’ 
AJ= 

ss 
J;;(X, z)AG(X, z) dXdz. (8) 

n 0 

A comparison of equations (7) and (8) reveals that 
the gradient of the functional, Jb(X, z), is given by 

J&(X, t) = A(A’, T). (9) 

The adjoint problem (6) is different from the stan- 
dard initial value problems in that the final time con- 
dition at time t = z,- is specified instead of the cus- 
tomary initial condition r = 0. However, problem (6) 
can be transformed to an initial value problem by 
introducing a new time variable T* defined as 

z* = Zr--t. (10) 

Then the standard solution techniques can be 

applied for the solution of the transformed initial 

value problem. 

3.4. The conjugate gradient method of minimization 
We consider the following iterative procedure for 

the estimation of the unknown strength of the heat 
source, G(X, 7). given in the form [8, 17, 181 

G(X,r)‘+’ =G(.X’,~)‘-~‘P(X,Z)I’, k=0,1,2 ,... 

(1 I) 

where fi” is the step size in going from step k to step 

k+ 1 and P(X, 7)" is the direction of descent at step k 

defined as [ 171 

P(X,,)" = J’ (X G 37 )“+*+l’(X Q-’ i > with y” = 0 

(12) 

where 7’ is the conjugate coefficient. We note that the 
special case y’ = 0 corresponds to the steepest descent. 

The step size /I” appearing in equation (I 1) is deter- 

mined by minimizing the functional J[G(X, z)‘+ ‘1 

given by equation (3), with respect to /II’, i.e. 

r$n J[G(X, ,)‘+ ‘1 

= “p 
I 

;’ m<, [0,,,(G~--B’“P”)-Z,,(T)]2ds. (13) 

Applying a Taylor series expansion and then 

minimizing with respect to fl” the following result is 
obtained : 

/y” = I’_=’ J” 
Y f-r. 

Different definitions of the conjugate coefficient y’ 

are reported in the literature [7,X]. In the present work 
we used the following expression [ 17, IS] 

T, ’ 

ss 
[J’(G’)]* dX dz 

I 0 0 
‘i= T,, 

ss 

-, k = 1.2,... (15) 

[J’(Gh- ‘)I’ dXdz 
0 0 

3.5. The stopping criterion 
As measurement errors are always present in prac- 

tical applications, the discrepancy principle [7, 171, 
described below, is used to establish the criterion for 
stopping the iterations in the estimation of the 
strength of the heat source. 

Let the standard deviation cr of the measurement 
errors be the same for all sensors and measurements, 

that is 

O,,,(T)-ZJ7) s 0. (16) 

Introducing this result into equation (3) we obtain 
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The value oft thus established is used as the stop- 
ping criterion. that is 

J[G(X.r)“f’] < 1:2. (18) 

3.6. The .solution ct&pritlm 
The computational procedure described above is 

summarized in the following algorithm : 

Step I. Choose an initial guess G(X. 7)‘). for example 
G(X, 7)” = constant. 

Step 2. Solve the direct problem given by equations 

(I), to obtain 0(X, z). 
Step 3. Knowing the computed temperature O,,,(z) 

and the measured temperature Z,,,(z). at the sensor 
locations. solve the adjoint problem (6). and obtain 

P.(X, 5). 
Step 4. Knowing i&(X, t) compute the gradient 

function Jkj(X, z) from equation (9). 
Step 5. Compute the conjugate coefficient ;” from 

equation (I 5). 
Step 6. Compute the direction of descent P(X. 7) 

from equation (12). 
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X 
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0 0.2 0.4 0.6 0.8 1 
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FE. 1. The estimation of a space and time dependent volu- FE. 2. The estimation of a space and time dependent volu- 
metric heat source using four temperature sensors and u = 0. metric heat source using seven temperature sensors and 

(a) Spatial variation. (b) Timewise variation. b = 0. (a) Spatial variation. (b) Timewise variation. 

Step 7. Setting [9] [AG(X. s)]” = P(.u. T)’ sohc the 

sensitivity problem (2) to obtain AO(X. 7). 

Step 8. Compute the step size in going from step /, 
to step k + I. /I”. from equation (14). 

Step 9. Compute G(X. 7)’ ’ ’ from equation (I I ). 

Step 10. Terminate the iterations when the stopping 
criterion. given by equation (18) is satisfied. If not, go 

to Step 2. 

4. RESULTS AND DISCUSSION 

The accuracy of the inverse analysis for estimating 
the space and time dependent strength of a volumetric 

heat source is examined for test cases by using simu- 
latcd transient temperature readings, &,(r). 

The functions exhibiting abrupt changes are gen- 
erally the most difficult cases to recover with inverse 
analysis. In order to perform the tests under such strict 
conditions, we considered, among others, a sawtooth 
shaped function for the spatial distribution of the 
source strength. 

The simulated transient temperature data, Z,,,,,, 
containing measurement errors are generated by 
adding random errors to the computed exact tem- 
peratures. O,,,,, , as 

0.1 

0 

0 0.2 0.4 0.6 0.8 1 

X 

t I I I I 1 
0 0.2 0.4 0.6 0.8 1 

r/q 
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L = ‘= z’ c L, z’= i ti 

0 0.2 0.4 0.6 0.8 1 

X 

0.2 

0.1 

0 
-- 

0 0.2 0.4 0.6 0.8 1 

e-f 

FIG. 3. The estimation of a space and time dependent volu- FIG. 4. The estimation of a space and time dependent volu- 
metric heat source using nine temperature sensors and 0 = 0. metric heat source using nine temperature sensors and 

(a) Spatial variation. (b) Timewise variation. u = 0.05. (a) Spatial variation. (b) Timewise variation. 

Z,H,i=O ,,,,, +ae “,,, i=1,2 ,..., N, m=1,2 ,..., M 

(19) 

where A4 refers to the total number of sensors and N 

to the total number of measurements taken with each 
sensor. In addition, a is the standard deviation of 
measurement errors which is assumed to be the same 
for all measurements and e,,,~, is the normally dis- 
tributed random error generated by the IMSL sub- 
routine RNNOR [19]. For normally distributed ran- 
dom errors, there is a 99% probability of the value of 
c,,,,, lying in the range 

-2.576 < em,, < 2.576. (20) 

In this paper we examine the effects of the shape 
of the spatial variation of the heat source, the total 
number of temperature sensors and their location, on 
the accuracy of the estimations. 

Figures 1-3 show the effects of the number of sen- 
sors on the estimation of the source strength, G(X, r), 
for the case when the spatial and timewise variations 
are considered sinusoidal functions. The standard 
deviation of the measurement errors is taken zero (i.e. 
u = 0). 

Figure 1 shows the estimations with four thermo- 

0.2 

0.1 

0 

0 0.2 0.4 0.6 0.8 1 

X 

I I I I 

0 0.2 0.4 0.6 0.8 1 

r/q 

couples located at X, = 0.0, 0.33, 0.67 and 1.0, 
while in Fig. 2 seven thermocouples are used at the 
locations X,,, = 0.0,0.17,0.33,0.50,0.67,0.83 and 1.0. 
Figure 3 is for the case involving nine thermocouples 

at locations A’,, = 0.0, 0.13, 0.25, 0.38, 0.5, 0.63, 0.75, 
0.88 and 1 .O. The locations of the thermocouples are 
shown by dots along the X axis. 

Figure 1 shows that the use of four thermocouples 

does not seem to be sufficient for accurate estimation 
of the spatial and timewise variation of the source 
strength. The use of seven thermocouples improves 
the estimations as shown in Fig. 2, while the use of 
nine thermocouples further improves the estimations 
as shown in Fig. 3. 

We also tried a curve fit by cubic splines on the 

simulated measured temperatures, but it did not 
improve the estimations. 

Figure 4 shows similar results for the case of stan- 
dard deviation 0 = 0.05. This case is to be compared 
to that shown in Fig. 3 for cr = 0. The standard devi- 
ation CJ = 0.05 corresponds to an error of 13% for 
a dimensionless maximum measured temperature 
Z,,, = 1. Even with such a large measurement error, 
the estimation is in good agreement with the exact test 
case. 
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Figure 5 is intended to show the ctfects of sharp 
peaks on the spacewisc variation of the source 
strength while a sinusoidal variation is chosen for the 
time variation. The nine thermocouples locations used 
for this case are the same as those used in Figs. 3 and 

4. A standard deviation g = 0.02 chosen for this case 
corresponds to an error of 5%. 

Figure 5(a) shows the estimations for the spatial 
variation of the source at three different times, i.e. 
7,/r, = 0.5, 0.3 and 0.1. Figure 5(b) shows the esti- 
mations for the timewise variation of the source 
strength at three different locations. i.e. .I’ = 0.25,O. 17 

and 0.08. The estimations are in good agreement with 
the exact strengths chosen for the test cases. 

Figures 6 and 7 are intended to illustrate the effects 
of the location of the tcmperaturc sensors on the accu- 

racy of the estimation of the source strength. In both 
casts seven thermocouples are used. For the case 
shown in Fig. 6 the thcrmocouplcs arc located at 

,I’,,, = 0.0, 0.08. 0.30, 0.50, 0.70. 0.92 and 1.0, which 
are away from the peaks and valleys, while in Fig. 7 

they are located close to tne peaks and valleys, ic. 
X,,, = 0.0, 0.17. 0.33, 0.50, 0.67. 0.83 and 1.0. A stan- 
dard deviarion of o = 0 is used in both cases. 

Figures 6(a) and 7(a) show the estimations for the 

0.3 [ I I I I I 

0.2 

0.1 

0 

0 0.2 0.4 0.6 0.8 1 

X 

0.3 c I I I I I 

0.2 

0.1 

0 

0 0.2 0.4 0.6 0.8 1 

l-/q 

‘The estimation of a space and time dependent volu- 
metric heat source using nine temperature sensors and 

u = 0.02. (a) Spatial variation. (b) Timewise variation. 

spatial variation of the source strength at three ditfcr- 
ent times. r/r, = 0.5. 0.3 and 0.1. Figures 6(b) and 
‘7(b) show the estimations for the timewisc variation 
of the source strength at three ditrcrcnt locations. i.c. 

X = 0.17, 0.12 and 0.06. 
WC note that in Fig. 7 thermocouples are located 

at the peaks and valleys of the spatial distribution 01 
the source strength while in Fig. 6 the thermocouples 

are away from the peaks and valleys. As expected the 
estimations are good with the former. Therefore, if 
some prior information is available on the location of 
peaks and valleys. the location of the thermocouples 

can be arranged accordingly. 
A mesh with I21 nodes in space and 50 in time 

was used to solve the direct. sensitivity and adjoint 
problems with finite difference. A dimensionless spa- 

tial spacing of AX = I I)/ I20 and a time step Ar = 0.002 
were used in the computations. To illustrate the physi- 
cal significance of the dimensionless time 7, = 0. I. we 
consider a plate of thickness L = 0.2 m. and thermal 
diffusivity z = IO ’ m2 s ‘_ For such a case, 7, = 0.1 

corresponds to t, = 4000 in real time. 

The numerical computations required only a few 
minutes in the IBM RISC 6000 computer. 
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L I= ‘= I=’ -1 
0 0.2 0.4 0.6 0.8 1 
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0 
t I I I I 1 
0 0.2 0.4 0.6 0.8 1 

Fro. 6. The estimation of a space and time dependent volu- 
metric heat source using seven temperature sensors poorly 
located and CJ = 0. (a) Spa:ial variation. (b) Timewise 

variation. 
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0 
c I =I = I= I= 
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FIG. 7. The estimation of a space and time dependent volu- 
metric heat source using seven temperature sensors well 
located and 0 = 0. (a) Spatial variation. (b) Timewise 

variation. 

5. CONCLUSIONS 

The inverse problem of estimating the unknown 
space and time dependent strength of a volumetric 

heat source in a one-dimensional plate has been solved 
using the conjugate gradient method of minimization 
utilizing the adjoint equation approach. Several test 
cases involving different shapes, number of tem- 
perature sensors and their locations, were considered. 
When the spatial distribution of the source strength 
contains sharp peaks and valleys, the estimations can 
be improved if information is available on their 
location. 
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